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THE FORMATION OF VORTICES IN A FREE BOUNDARY LAYER

H. Schade and A. Michalke
Institut fur Turbulenzforschung der Deutschen
Versuchsanstalt fur Luft- und Raumfahrt (DVL))

1. Introduction /147*

1.1. The Basic Phenomenon

It has long been known that the transition from a round

laminar free jet to turbulence passes through a periodic inter-

mediate state in which the cylindrical interface between the jet

and the surrounding fluid rolls up in a meandering fashion.

Figure 1 shows this process in water behind a nozzle with a

diameter of 1.5 cm at a Reynolds number of 1800, based on

average velocity in the nozzle and nozzle diameter; this photo-

graph comes from a film by E. Berger [1] on the laminar-turbulent

transition.

Fig. 1. Free jet in water at Reynolds number Re = 1800,
nozzle diameter D = 1.5 cm.

As early as 1867, J.-Tyndall [2] observed that the boundary

of an air jet, made visible with smoke, is very unstable with

respect to excitation by sound. A year later, H. Helmholtz [3],

who was familiar with Tyndall's work and found confirmation for

*Numbers in the margin indicate pagination in the foreign text.



its results, concluded on the basis of theoretical considera-

tions that the boundary would have to roll up. Although he

does not expressly state how he arrived at this conclusion, it

is reasonable to assume that he approximated the boundary, which

is of course a cylindrical vortex sheet for an ideal fluid, by

a series of discrete ring vortices and considered the induction

effects these ring vortices have upon one another when they are

deflected from the equilibrium position in the form of a slight

waviness in the vortex sheet. Figure 2, top, shows a series of

vortices arranged at the extrema and the inflection points of

a sine curve. In addition, the velocities induced by the two /148

neighboring vortices at the location of a vortex and their

resultant are plotted in each case. Below that, the same series

of vortices is shown a brief time later, when each vortex has

migrated a certain distance due to the induced velocity field;

the velocities induced in the new location are also plotted

again. The same configuration is plotted under this after another

interval of the same length.

1.2. Early Theoretical
Studies

The exact mathematical

confirmation of this concept

took place in two steps.

Lord Rayleigh [4] was first

able to demonstrate, in 1878,

that a planar vortex sheet

in an ideal fluid is unstable

vis-a-vis small wavy dis-

turbances of any given fre-

quency and wavelength. In
Fig. 2. The rolling up of a

1931, L. Rosenhead [5] then
vortex -sheet. according to
Helmholtz. demonstrated that a planar
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vortex. sheet in an ideal fluid rolls up in a meandering fashion

after it is once perturbed in a wavy configuration. Rosenhead's

calculations were given a critical check in 1959 by G. Birkhoff

and J. Fisher [6] and were then improved, independently of this,

by F.R. Hama and E.R. Burke [71].

The following considerations are essential in this work:

Rayleigh's calculations do demonstrate the instability of the

vortex sheet but can not explain why only one of the infinite

number of unstable wavelengths in the experiment occurs such

that an observable phenomenon takes place. This is a result of

neglecting viscosity: The vortex sheet is unstable because the

induction effects resulting from the various elementary vortices

are in unstable equilibrium. This is explainable within the

theory of ideal fluids, and the addition of fluid friction has

only a damping effect on this.'. The favoring of a specific

frequency and wavelength is a consequence of the shear profile

which develops under the influence of viscosity, however. This

is directly evident for a planar vortex bheet; in this case, a

characteristic length manifests itself only as the result of

taking the shear profile into :consideration, and this is the

condition for the occurrence of a special frequency or wavelength.

For a cylindrical vortex sheet, we could consider jet diameter to

be a characteristic length; the good agreement between the data

obtained with the round free jet and the theoretical results

derived for the planar case indicates, however, that the effect

of axial symmetryyis secondary. This is also reasonable because

a phenomenon is involved in which the boundary layer is small

relative to jet diameter. Studies on the effect of axial sym-

metry are now in progress .......................

In contrast,. it is known that Blasius' laminar boundary layer,
for instance, becomes unstable only when friction is taken into
consideration. It is desirable to designate these two types of
unstable flow as induction-unstable and friction-unstable,
respectively.
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1.3. Previous Experimental Studies

The vortices produced in the axially symmetrical free jet

are being studied at the DVL's Institut fUr Turbulenzforschung

in a series of projects with the aid of the hot-wire measure-

ment method. The first results of these studies can be found in

two reports by R. Wille, U. Domm, H. Fabian and 0. Wehrmann [8]

and by R. Wille, O. Wehrmann and H. Fabian [9]. H. Fabian [10]

studied the velocity profile of the vortex rings, while O. Wehr-

mann [il] concerned himself with acoustic effects on vortex rings.

O. Wehrmann and R. Wille [12] and R. Wille [13] provide a summary

of the studies. Independently, H. Sato [14, 15] has applied

similar studies to a free shear layer behind a step and to a

planar free jet.

Measurements of two quantities are essential for this work:

First, we can measure the frequency of vortices which develop

without artificially influencing the flow. Studies by 0. Wehr-

mann [16] have indicated that this natural vortex development

behind the nozzle is not strictly periodic, but rather that

the frequency fluctuates about a certain mean. A timewise mean

for this so-called natural frequency can be determined from a /149

large number of frequency measurements. On the other hand, we

can artificially impress a sound field on the jet of such low

intensity that it is not picked up by the hot-wire probe. Vortex

formation at this frequency can then be induced in a region on

both sides of the natural frequency at a point in the flow where

vortices cannot be observed without the sound field. Figure 3
shows the natural and artificially excited velocity fluctuations,

made visible on an oscillograph, which are caused by the. vortices

which pass by the hot-wire probe.
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Due to. the great deal

of regularity in the arti-

ficially excited vortices,

it is also possible in this

case to measure the distance
Natural Vortex FrequencyNatural VorExcited b y Sound between two vortices fromVortex... Excited by Sound
Frequency the phase relationship

Fig. 3. Oscillograms of a) the between a fixed and a

natfral vortex frequency, and movable hot-wire probe._
') the frequency excited by sound.
Uo = 4.53 m/sec, D = 10 cm,
x/D = 0.38,

1.4. Subject of This Study

The process of vortex formation could thus be described as

follows: Due to friction, a wall boundary layer forms in the

nozzle and a free shear layer downstream from it which can be

computed at low viscosity with the aid of boundary layer theory.

At low viscosity, this shear layer is induction-unstable with

respect to a certain range of frequencies and wavelengths, which

can be calculated with the aid of stability theory -- at the

very low viscosity, with the aid of thelfrictionless stability

theory to a good approximation. All unstable frequencies and

the associated wavelengths can be excited by artificial stimulus;

without artificial effects, the most unstable disturbance

primarily develops. Once a dominant wavelength has developed,

the wave rolls up, at low viscosity, under the influence of

the mutual induction of elementary vortices, maintaining fre-

quency and wavelength, as Rosenhead described for an ideal fluid.

The subject of this work is a first attempt to calculate

the natural frequency derived from this mechanism and the functional

relationship between the exciting frequency and the wavelength

which develops, and to compare these with the empirical results.
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2. Velocity Field

2.1. Steady Region

A study will be made to determine the quantities upon which

the velocity at a point in the flow depends. First of all, it

of course depends upon the geometry of the nozzle which produces

the jet. Since this relationship is of no interest in the

present context, it can be eliminated by using only geometrically

similar nozzles: the vortex filament nozzles described by A.

Michalke [17] were employed, which have the advantage that the

potential velocity field therein can be calculated relatively

easily. Figure 4 shows the contour of such a vortex filament

nozzle.

Aside from this, the

S ---- magnitude of velocity at a

point in the flow is a function

of five variables:

2

Two position coordinates

in the meridian plane, such as

I- working length x measured along

the line of wall flow in the

nozzle and along its continua-

00 tion in the free jet, and a

Scoordinate y perpendicular to it;

Fig. 4. Wall contour of the A characteristic length for
vortex. filament nozzle.p, dimensionless cylindri- the nozzle, such as its diameter
p, 5= dimensionless cylindri- 2

2The selection of nozzle diameter as a characteristic length could

be taken as a contradiction to the statement made above that axial
symmetry is only of secondary importance. This objection is
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A characteristic velocity, such as the velocity. Uo on the

nozzle axis at the end. cross section;

The kinematic viscosity v of the fluid. If the units of

length and velocity are given, three independent parameters remain,

e.g. the two position coordinates x/D and y/D and viscosity

V/UoD or Reynolds number

Re = UoD/v (1)

If we take Prandtl's boundary layer equations as our basis,

rather than the Navier-Stokes equations, we can also eliminate

the dependence upon Reynolds number by means of the well-known

variable transformation n = (y/D)/Re. Velocity at a given

point in the flow can then be written in the form

LI; Uo\D' D

i.e. we can describe the velocity field in and downstream from /150

such a nozzle by one velocity profile

L L- u,, I

each for each value of working length x/D.

The complete computation of these profiles is so complex

that we consider it sufficient to characterize each by two

characteristic quantities. Within the nozzle,. velocity Up at

the margin of the boundary layer and displacement thickness

2 (cont'd) eliminated if we perhaps selected the length of the
nozzle contour instead. For geometrically similar nozzles,
however, all lengths are proportional and therefore of equivalent
value as reference lengths, and the diameter of the nozzle at
the endt.cross section is the most graphic.
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J ( ~ (2)

can be used for this purpose. Figure 5 shows the curves for

these two characteristic quantities from studies by A. Michalke

[17]. Computation of the velocity profiles outside the nozzle

is still in progress.

_ - - - -vThe u velocity :I KJ(:

S , ' profiles inside and
3-- 

outside the nozzle

2 -.. -,0 have also been

Sc measured by a method
e7 --- described by 0. Wehr-

Anfang der Disenwand s e Di:;en.rad-

0 -- _ prs:hnitt mann [16] and A.
-3,5 -3 -2 -1. Ir/D Michalke [17].

Figure 6 shows two

of the profiles
Fig. 5. Displacement thickness (6*/D)v/R
of the boundary layer and potential veloc- plotted by a light-
ity .. U /U o along the wall of the vortex spot recorder at
filament nozzle (x/D arc length, Uo veloc-
ity: at center of end.;nozzle cross sec- the end:cross section
tion). of the nozzle and a
Key: short distance down-
a. Theoretical curve of potential velocity stream. Average
b. Curve of potential velocity corrected

on the basis of measurements profiles were plotted
c. Displacement thickness of boundary from measurements at

layer, calculated on the basis of
curve b various velocities;

d. Displacement thickness of boundary these are shown.in
layer, calculated on the basis of
curve a Fig. 7. In the

e. Beginning of nozzle wall end cross 'section of
f. End cross section of nozzle

the nozzle, the two---- Modified Kotschin method
Zaat method characteristic quanti-

0 Data for D = 10 cm ties were found to be0 Data for D = 7.5 cm
[Commas in numerals = decimal points.]
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U /U = 1.06., (6*/D) /R = 1.20 (3)

2.2. Periodically Nonsteady Region

The addition of dependence upon time makes the velocity

field so complex that it is reasonable to limit ourselves from

the outset to a consideration of two conveniently measurable

characteristics of flow in this region, namely the frequencies

and wavelengths of the resultant vortices.

I Uo If the above-stated

assumption that viscosity

is not of direct importance

to the rolling-up process,

-- Einschafendes but is only of secondary
SondenvorschubsSSoeorss importance via the forma-

IM tion of a shear profile,

b is valid, these parameters

depend only upon a charac-

teristic length and a charac-

teristic velocity for the

shear profile, but not also
-J-- upon the viscosity of the

medium, if consideration is

Fig. 6. Two velocity profiles in limited to vortex filament
and downstream from the vortex nozzles. U and
filament nozzle, plotted by a nozzles. Up and 6' in the
light spot recorder. nozzle end cross section can,
a) D = 10 cm, Uo = 4.53 m/sec, according to the above con-

x = -0.2 mm
b) D = 10 cm, Uo = 4.53 m/s.ec, siderations, serve as these

x = 16 mm characteristic quantities;

Key: c. Probe advance started since Up and Uo have a

constant ratio there,

regardless of the experimental conditions, it is reasonable to
use the more easily measured Uo in place of Up. Accordingly,

c) 9



u/U, the frequency f6*/Uo and

Sthe wavelength X/6" of

0 _ __ __ natural perturbations

S2 :yR/ would have to be constants

independent of ReynoldsFig. 7. Averaged boundary layer
profiles in and downstream from number, and the functional
the vortex filament nozzle. Up = relationship between fre-
= potential velocity, diameter p.
D = 10 cm. quency and wavelength in

artificially excited

vortices would have to be representable by a single curve inde-

pendent of Reynolds number.

It is evident that this will not be the case at very high

viscosity or low Reynolds number: Friction would then have a

damping action, and flow in the nozzle and in the free jet

could no longer be calculated on the basis of boundary layer

theory, i.e., the dimensional considerations formulated in the /151

application of boundary layer theory no longer apply, for the

axial symmetry of the problem can certainly no longer be

neglected. For large Reynolds numbers, however, these concepts

have been confirmed not only by H. Sato [14, 15] for the separated

boundary layer behind a step and for the planar free jet, but

also by the studies published here for the round free jet. In

addition, they also explain the rule, observed by H. Sato [14,

15] and 0. Wehrmann [16], that the natural frequency is propor-

tional to the 3/2 power of velocity; at most,

S~ I f D, 2 . L. (4)

can still be dependent upon nozzle contour.

Figure 8 shows dimensionless natural vortex frequency,

averaged over time, as a function of Reynolds number for vortex

10



filament nozzles with diameters of D = 10: cm and D =. 7.5 cm.

In addition, results are plotted from hot-wire measurements in

water downstream from a vortex filament nozzle with a diameter

of D = 1.5 cm. We obtain

f6*/U o = 0.0234 (5)

as the average for natural frequency.

O. Wehrmann [16] has
Sr- measured the distance between

?0 ...-- v- two successive vortices
a Theoretischer Wert in

Raytoigscher N/herung under artificial excitation

as a function of frequency

0 4 /.I0 for three different velocities.
I d.ll' 8" 10 12.10

Re One obtains the wavelength

associated with each vortex

Fig. 8. Natural vortex frequency frequency in this manner.

f6*/U o downstream from a vortex Figure 9 shows the experi-
filament nozzle as a function of
Reynolds number Re = UoD/v.

6* = Displacement thickness of dimensionless form. From
boundary layer in nozzle this diagram we find the
end cross section; wavelength associated with

Measurements in air for nozzle
diameter D = 10 cm (o), D = 7.5 the natural frequency to be
cm (e), and in water with D =
= 1.5 cm (V).

Key: a. Theoretical value in
Rayleigh's approximation

3. Stability Study

3.1. Nozzle Flow

The question arises as to what velocity profile is respon-

sible for instability. It was probable from the outset that it
would be a profile measured a short distance ahead of the

11



.50

/6* observed rolling-up process.

Nevertheless, a check was

30__ first made as to whether

a \ the boundary layer profile

T2oretscherZ might already be unstable
Verlauf in
Rayleighscher Naherung in the nozzle,.,basedon

10 -b -Since,
Naterliche stability theory. Since,
Frequenz

O1 20 7'o2z according to Fig. 5,
f...*/ . boundary layer thickness

decreases along a large
Fig. 9. Wavelength X/6* as a
function of frequency f6*/Uo portion of the nozzle con-

downstream from the vortex tour -- this is also
filament nozzle; nozzle diameter
D = 10 cm, 6* = displacement plausible on the basis of

thickness of boundary layer in the highly accelerated
nozzle end cross section,
velocity Uo = 7.3 m/sec (o), flow -- and only increases

Uo = 6.0 m/sec (@), Uo = 4.5 again in the last part,
m/sec (V).

where acceleration approaches

Key: a. Theoretical curve in zero the profile in the end
Rayleigh's approximation

b. Natural frequency cross section was studied

with respect to its stability.

The stability curves obtained by T. Tatsumi [18] for pipe inlet

flow were taken as a basis. This appeared justified because

the velocity profile in the end cross section of the nozzle has

a distinct boundary layer character, and we know that boundary

layer flows can be considered parallel on the basis of the
3stability theory.

Proceeding from Prandtl's boundary layer equations for

flows whose velocity field, in cylindrical coordinates, is of

the form {vr(r,z), 0, vz(r,z)}, T. Tatsumi calculates a series

In the stability theory, those flows are called parallel flows
in which the velocity vectors are parallel to one another at
all points in the flow field.

12



of velocity profiles for pipe inlet flow in the first part of

his article. In place of cylindrical coordinates z and r, he

introduces the new dimensionless variables

for this purpose; here a is pipe radius and R is a Reynolds

number based on the velocity averaged .over the pipe cross section

and upon pipe radius. He characterizes the velocity profiles

for various values of X by means of a displacement thickness

6(X) f 1 (X, ) _dy (8)

where u(X,T) is the axial velocity component at point (X,T), and

Uo(X) is velocity on the axis, i.e. at the point (X,::1/2).4 From

the inlet to the Hagen-Poiseuille profile, 6 increases from 0 to

0.25. Boundary layer theory is of course only applicable as

long as a flow core exists; in this region, 6 varies between 0

and 0.15. The boundary layerprofiles u/Uo for various X or 6

can be made to coincide if we introduce the variable

H = T/6 (9)

in place of T. The value of boundary layer thickness 6 which

would be associated with the profile in the nozzle end cross

section is of course a function of Reynolds number Re = UoD/v. /152

Table 1 contains various pairs of. values; the fact that the

values of 6 for Re > 103 all lie below 0.15 basically just con-

firms the fact that flow in the nozzle's end cross section has

For pipe inlet flow, this velocity is practically equal to the
velocity Up(X) at the margin of the boundary layer, since the
lines of flow are not noticeably bent.

13



boundary layer character in this Reynolds number range.

TABLE 1.

L, D (L,, D)

1 0 0,9 2,8 - 10 1

10' 0,025 4,0 : 10'
10 0,009 1,2 - 10
10" 0,0025 3,0 • 10-

In the secondtipart of his article, T. Tatsumi derives the

axially symmetrical counterpart to the Orr-Sommerfeld equation 5

first given by J. Pretsch [19], apparently without being

acquainted with Pretsch's article. If we write the differential

equation for perturbation as a function of H, we merely have a
velocity profile for all values of 6, but then 6 occurs explicitly
in the differential equation, so we still obtain different

stability curves for different values of 6. These curves were
calculated by T. Tatsumi for several values of 6.

The critical Reynolds numbers for the 6 values in Table 1
have been determined by interpolation from the values given by
T. Tatsumi. We see that up to Reynolds numbers of about 105,

the critical Reynolds number is larger than the actual Reynolds
number for the flow, i.e., flow is stable. This corresponds at
the same time to the limit above which no measurements were made
because flow became too turbulent.

3.2. Free Jet

Further study was based on the velocity profile for x/D =
= 0.16. That is the last profile measured, since the ralling-up
process becomes appreciable just downstream from this in the jet.
5 65of. footnote 6
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The surprising result was that the stability. calculation even

for a quite rough approximation of this profile agreed quite

well with the measurement results, i.e. when we simply replace'

it with a straight line whose slope coincides with that of the

measured profile at half its height (cf. Fig. 10).

The frictionless

bU stability calculation

S- for this profile was

published as early as

1880 by Lord Rayleigh

[20]. He employs Euler's

Y Iequations in Cartesian

coordinates using

Fig. 10. Approximation of the
measured velocity profile in
the free jet; a. first approxi- u +(y)+T(x,y,t), v=(x,y,t) ,w=o\(10)
mation, b. second approximation, q (x) +4(x,yt)
c. measured profile.

for the velocity components

and for pressure divided by the constant density; the quantities

with bars are meant to represent the basic flow, and the quanti-

ties with tildes are meant to represent a small perturbation in

this basic flow. Since the basic flow must satisfy Euler's

equations, the terms which are free of perturbation quantities

cancel out. By neglecting the quadratic terms in the perturba-

tion quantities, moreover, Lord Rayleigh obtains the so-called

linearized frictionless differential perturbation equations

at Ox ax'

at Dy' (11)

15



We see that we can satisfy these equations with the expression

(p (y) e" (x-c ) (y) e,(x - ct )

• (12)
q = -iz te x-c) f (7 

Ic) P ly

where 4 must satisfy Rayleigh's equation 6

(u - c)(0" - 62 ) _ u,, = 0 (13)

The theory of this equation is generally quite complex and

lacking in clarity; but for a velocity profile such as that in

the present case, composed of linear subsections, it is possible

to specify the general solution immediately; it has already been

discussed by Lord Rayleigh and has the form

¢ = Aeay + Be- ay  (14)

where integration constants A and B are different in each region

of the velocity profile. Since i and 9 must vanish at infinity,
we obtain the following more detailed form in the case at hand

(cf. Fig. 10):

L
At eY for Y< ---

2P= A, ely + B., e-'Y for - _< 2 L(5

B: e-a Y for 2 Y

Proceeding from the Navier-Stokes equations, first W. McF. Orr
[21], for a special case, and then A. Sommerfeld [22], in a com-
plete generalization, derived the corresponding differential
equation for real fluids. This equation was first solved success-
.fully by W. Tollmien [23] and H. Schlichting [24, 25, 26]; their
theory was later developed primarily by C.C. Lin [27] and can now
be considered complete; cf. [28].

16



Boundary conditions to be applied are that . and q be continuous

at the interfaces. If we substitute (14) into (12), we find

that ¢ and (u - c)¢' - u'¢ are continuous as we pass through

the interfaces. This provides four homogeneous linear equations

for the four integration constants Al, A2 , B1 and B2 ; this system

only has nontrivial solutions if its coefficient determinants /152

vanish. This condition leads to the equation

- 2 L (16)

where the significance of U and L can again be seen from Fig. 10.

For L + 0, this formula naturally yields the result c/U = (1 ± i)/2

for the vortex layer. This equation assigns: to each dimension-

less wave number aL or, with a = 2w/A, to each dimensionless

wavelength A/L a generally complex dimensionless velocity c/Ul.

and thus also a dimensionless frequency fL/U = crL/XU. The

profile is unstable relative to all wavy perturbations for which

an imaginary part of c exists. This is the case for aL - 1 - e- a L

< 0 or for aL < 1.278 and A/L > 4.916. The associated frequency

range fL/U < 0.1017 would have to correspond to the region in

which artificial vortices can be produced. The factor for time-

wise amplification is aci; we obtain the factor for spatial

amplification if we move with the perturbation wave, i.e. substi-

tute x = crt; it is thus aci/cr. Both are zero at the boundaries

of the unstable region and have a minimum at a point between

them. Since the dimensionless propagation velocity cr/U is

constant over the entire unstable region (= 0.5), this occurs

for both at the same point aL = 0.797 or X/L = 7.884, where

aLci/U = 0.20118 and aLci/cr = 0.40237. The associated frequency

is fl/U = 0.06342. This point of maximum amplification corresponds

to natural perturbation in the experiment.

If we now lay this profile on the measured profile in such

a manner that they are tangent to one another at the half-height

17



point, we obtain U = Uo and L = 36* as :the relationship between

the characteristic quantities for the two profiles. For the

unstable region we thus obtain f6*/U o < 0.0339, and for the

natural frequency and wavelength we obtain

fS*/U o = 0.0211 and A/6* = 23.7 (17)

These values and the functional relationship between frequency

and wavelength have been included in Figs. 8 and 9.

M. Lessen and J.A. Fox [29, 30] have carried out a stability

calculation for a profile which, similar to a boundary layer,

develops from a vortex layer. To all appearances, this profile

represents a considerably better approximation to the measured

profile. Since we know how sensitive stability calculations are

relative to changes in the curve of the second derivative of the

profile, we could suppose that the results of the stability

calculation for Lessen's profile agree considerably better with

the measurement results. This is not the case, however. We

shall therefore not attempt a detailed comparison with the

Lessen-Fox theory here.
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